From LEP to LHC

1. Physics of the Z boson (I)
2. Physics of the Z boson (II)
3. Physics of the W boson
4. Physics of the top quark
5. Tests of the Standard Model
6. Search for the Higgs boson (I)
7. Search for the Higgs boson (II)

Salvatore Mele
CERN
(Salvatore.Mele@cern.ch)
From LEP to LHC

1. Physics of the Z boson (I)
 • LEP (Statistics interlude)

2. Physics of the Z boson (II)
 • LEP (Statistics interlude)

3. Physics of the W boson
 • LEP, Tevatron, LHC (Statistics interlude)

4. Physics of the top quark
 • Tevatron, LHC

5. Tests of the Standard Model
 • LEP, Tevatron

6. Search for the Higgs boson (I)
 • LEP (Statistics interlude)

7. Search for the Higgs boson (II)
 • Tevatron, LHC

Salvatore Mele
CERN
(Salvatore.Mele@cern.ch)
Tests of the Standard Model

- Couplings and parameters
- The asymmetry parameters, reloaded
- Measurements of the strong coupling
- Measurements of the electromagnetic coupling
- The Standard Model “black box”
- Measurements and predictions
- Alternative point of views
Some bibliographic references

arXiv:0712.0929
Nuts and bolts of the Standard Model

At tree level electromagnetic and weak couplings are related as:

\[G_F = \frac{\pi \alpha}{\sqrt{2} m_W^2 \sin^2 \theta_W^{\text{tree}}} \]

The neutral- and charged-current sectors are related as:

\[\rho_0 = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W^{\text{tree}}} \]

In a model with only one Higgs-boson doublet

\[\rho_0 = 1 \]
Tree-level L and R fermion couplings

\[
g_L^{\text{tree}} = \sqrt{\rho_0} \left(T_3^f - Q_f \sin^2 \theta_W^{\text{tree}} \right) \\
g_R^{\text{tree}} = -\sqrt{\rho_0} Q_f \sin^2 \theta_W^{\text{tree}},
\]

<table>
<thead>
<tr>
<th>Family</th>
<th>(T)</th>
<th>(T_3)</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\begin{pmatrix} \nu_e \ e \end{pmatrix}) _L, (\begin{pmatrix} \nu_\mu \ \mu \end{pmatrix}) _L, (\begin{pmatrix} \nu_\tau \ \tau \end{pmatrix}) _L</td>
<td>1/2</td>
<td>+1/2</td>
<td>0</td>
</tr>
<tr>
<td>(\nu_{eR}), (\nu_{\mu R}), (\nu_{\tau R})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(e_R), (\mu_R), (\tau_R)</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(\begin{pmatrix} u \ d \end{pmatrix}) _L, (\begin{pmatrix} c \ s \end{pmatrix}) _L, (\begin{pmatrix} t \ b \end{pmatrix}) _L</td>
<td>1/2</td>
<td>+1/2</td>
<td>+2/3</td>
</tr>
<tr>
<td>(u_R), (c_R), (t_R)</td>
<td>0</td>
<td>0</td>
<td>+2/3</td>
</tr>
<tr>
<td>(d_R), (s_R), (b_R)</td>
<td>0</td>
<td>0</td>
<td>-1/3</td>
</tr>
</tbody>
</table>
Tree-level V and A fermion couplings

\[
\begin{align*}
 g_V^{\text{tree}} & \equiv g_L^{\text{tree}} + g_R^{\text{tree}} = \sqrt{\rho_0} \left(T_3^f - 2Q_f \sin^2 \theta_W^{\text{tree}} \right) \\
 g_A^{\text{tree}} & \equiv g_L^{\text{tree}} - g_R^{\text{tree}} = \sqrt{\rho_0} T_3^f.
\end{align*}
\]

<table>
<thead>
<tr>
<th>Family</th>
<th>(T)</th>
<th>(T_3)</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\begin{pmatrix} \nu_e \ e \end{pmatrix}L, \begin{pmatrix} \nu\mu \ \mu \end{pmatrix}L, \begin{pmatrix} \nu\tau \ \tau \end{pmatrix}L, \nu{eR}, \nu_{\mu R}, \nu_{\tau R}, e_R, \mu_R, \tau_R</td>
<td>1/2</td>
<td>+1/2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1/2</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>\begin{pmatrix} u \ d \end{pmatrix}_L, \begin{pmatrix} c \ s \end{pmatrix}_L, \begin{pmatrix} t \ b \end{pmatrix}_L, u_R, c_R, t_R, d_R, s_R, b_R</td>
<td>1/2</td>
<td>+1/2</td>
<td>+2/3</td>
</tr>
<tr>
<td></td>
<td>-1/2</td>
<td>-1/3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>+2/3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>-1/3</td>
</tr>
</tbody>
</table>
Life is not at tree-level

Electroweak corrections to the propagators

These are actually a good thing!
(Higgsometry, more later)
Life is not at tree-level
“Effective” quantities

Define the electroweak mixing angle including all electroweak corrections as:

$$\rho_0 = \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = 1$$

Absorbing the electroweak corrections into two form factors the “effective” couplings are:

$$\sin^2 \theta^f_{\text{eff}} \equiv \kappa_f \sin^2 \theta_W$$
$$g_{Vf} \equiv \sqrt{\rho_f} \left(T^f_3 - 2 Q_f \sin^2 \theta^f_{\text{eff}} \right)$$
$$g_{Af} \equiv \sqrt{\rho_f} T^f_3 ,$$
“Effective” quantities

Define \(\sin^2 \theta_{\text{eff}}^f \equiv \kappa_f \sin^2 \theta_W \) to keep the same structures for the basic formulas

\[
\begin{align*}
\rho_0 &= \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} \\
g_V^{\text{tree}} &= \sqrt{\rho_0} \left(T_3^f - 2Q_f \sin^2 \theta_W^{\text{tree}} \right) \\
g_A^{\text{tree}} &= \sqrt{\rho_0} T_3^f.
\end{align*}
\]

\[
\begin{align*}
\rho_0 &= \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} \\
g_V^f &= \sqrt{\rho} \left(T_3^f - 2Q_f \sin^2 \theta_{\text{eff}}^f \right) \\
g_A^f &= \sqrt{\rho} T_3^f.
\end{align*}
\]
Measuring $\sin^2 \theta_{\text{eff}}^f$ from g_{Vf} and g_{Af}

$$\frac{g_{Vf}}{g_{Af}} = 1 - \frac{2Q_f}{T_3^f} \sin^2 \theta_{\text{eff}}^f = 1 - 4|Q_f| \sin^2 \theta_{\text{eff}}^f$$

g_{Vf}$ and g_{Af} measured via the asymmetry parameters A_f

$$A_f = \frac{g_{Lf}^2 - g_{Rf}^2}{g_{Lf}^2 + g_{Rf}^2} = \frac{2g_{Vf}g_{Af}}{g_{Vf}^2 + g_{Af}^2} = 2 \frac{g_{Vf}/g_{Af}}{1 + (g_{Vf}/g_{Af})^2}$$

Concentrate on $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ for which the sensitivity is high
The A_f parameters

\[A_{FB}^{0,1} = \frac{3}{4} A_e A_1 \]
\[A_{FB}^{0,b} = \frac{3}{4} A_e A_b \]
\[A_{LR} = A_e \]
\[A_{LRFB} = \frac{3}{4} A_f \]
\[P_\tau = f(A_e, A_\tau) \]

Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$A_{FB}^{0,\ell}$</th>
<th>A_{LR}, A_{LRFB}^{ℓ}</th>
<th>P_τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_e</td>
<td>0.139±0.012</td>
<td>0.1516±0.0021</td>
<td>0.1498±0.0049</td>
</tr>
<tr>
<td>A_μ</td>
<td>0.162±0.019</td>
<td>0.142±0.015</td>
<td>—</td>
</tr>
<tr>
<td>A_τ</td>
<td>0.180±0.023</td>
<td>0.136±0.015</td>
<td>0.1439±0.0043</td>
</tr>
</tbody>
</table>

Combinations ($\chi^2 = 3.6/5$)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Average</th>
<th>Correlations A_e, A_μ, A_τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_e</td>
<td>0.1514±0.0019</td>
<td>1.00</td>
</tr>
<tr>
<td>A_μ</td>
<td>0.1456±0.0091</td>
<td>−0.10 1.00</td>
</tr>
<tr>
<td>A_τ</td>
<td>0.1449±0.0040</td>
<td>−0.02 0.01 1.00</td>
</tr>
</tbody>
</table>

Leptonic universality

$A_\ell = 0.1501 ± 0.0016$
The A_f parameters

Measurements from heavy quarks

\[
A_{FB}^{0,1} = \frac{3}{4} A_e A_l
\]

\[
A_{FB}^{0,b} = \frac{3}{4} A_e A_b
\]

\[
A_{LR}^0 = A_e
\]

\[
A_{LRFB}^0 = \frac{3}{4} A_f
\]

\[
P_T = f(A_e, A_\tau)
\]

Combinations from leptons

<table>
<thead>
<tr>
<th>Flavour q</th>
<th>$A_q = \frac{4}{3} \frac{A_{FB}^{0,q}}{A_e}$</th>
<th>Direct A_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0.881±0.017</td>
<td>0.923±0.020</td>
</tr>
<tr>
<td>c</td>
<td>0.628±0.032</td>
<td>0.670±0.027</td>
</tr>
</tbody>
</table>

Results of all the above

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Average</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_ℓ</td>
<td>0.1489±0.0015</td>
<td>1.00</td>
</tr>
<tr>
<td>A_b</td>
<td>0.899±0.013</td>
<td>-0.42 1.00</td>
</tr>
<tr>
<td>A_c</td>
<td>0.654±0.021</td>
<td>-0.10 0.15 1.00</td>
</tr>
</tbody>
</table>
Compare A_f from different measurements

$$A^0_{LRFB} = \frac{3}{4} A_f$$

χ^2/dof = 4.5/4
34%

$$A^0_{FB} = \frac{3}{4} A_e A_f$$

$$A^0_{LRFB} = \frac{3}{4} A_l$$

$$A^0_{FB} = \frac{3}{4} A_e A_l$$

$$P_\tau = f(A_e, A_\tau)$$
Extract g_{Af} & g_{Vf} from asymmetry parameters A_f

$$A_f = \frac{g_{Lf}^2 - g_{Rf}^2}{g_{Lf}^2 + g_{Rf}^2} = \frac{2g_{Vf}g_{Af}}{g_{Vf}^2 + g_{Af}^2} = 2 \frac{g_{Vf}/g_{Af}}{1 + (g_{Vf}/g_{Af})^2}$$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Average</th>
<th>$g_{A\nu}$</th>
<th>g_{Ae}</th>
<th>$g_{A\mu}$</th>
<th>$g_{A\tau}$</th>
<th>$g_{V\nu}$</th>
<th>$g_{V\mu}$</th>
<th>$g_{V\tau}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_{A\nu} \equiv g_{V\nu}$</td>
<td>$+0.5003\pm0.0012$</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_{Ae}</td>
<td>-0.50111 ± 0.00035</td>
<td>-0.75</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$g_{A\mu}$</td>
<td>-0.50120 ± 0.00054</td>
<td>0.39</td>
<td>-0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$g_{A\tau}$</td>
<td>-0.50204 ± 0.00064</td>
<td>0.37</td>
<td>-0.12</td>
<td>0.35</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$g_{V\nu}$</td>
<td>-0.03816 ± 0.00047</td>
<td>-0.10</td>
<td>0.01</td>
<td>-0.01</td>
<td>-0.03</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$g_{V\mu}$</td>
<td>-0.0367 ± 0.0023</td>
<td>0.02</td>
<td>0.00</td>
<td>-0.30</td>
<td>0.01</td>
<td>-0.10</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>$g_{V\tau}$</td>
<td>-0.0366 ± 0.0010</td>
<td>0.02</td>
<td>-0.01</td>
<td>0.01</td>
<td>-0.07</td>
<td>-0.02</td>
<td>0.01</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Measurements of $\sin^2\theta_{\text{lept}}^{\text{eff}}$

The values extracted from A_{LR} and A_{FB}^b are the most precise and differ by 3.2σ

$$\frac{0.23220}{\sqrt{0.00026^2 + 0.00029^2}} = 3.2$$
Time evolution of the A_{LR}/A_{FB}^b discrepancy
Statistical interlude: what’s a “sigma”?

\[f(x; \mu, \sigma) \]

\[
\begin{array}{c|c|c|c|c|c}
\alpha & \delta & \alpha & \delta \\
0.3173 & 1\sigma & 0.2 & 1.28\sigma \\
4.55 \times 10^{-2} & 2\sigma & 0.1 & 1.64\sigma \\
2.7 \times 10^{-3} & 3\sigma & 0.05 & 1.96\sigma \\
6.3 \times 10^{-5} & 4\sigma & 0.01 & 2.58\sigma \\
5.7 \times 10^{-7} & 5\sigma & 0.001 & 3.29\sigma \\
2.0 \times 10^{-9} & 6\sigma & 10^{-4} & 3.89\sigma \\
\end{array}
\]
From the experimental point of view, no systematic effect potentially explaining such shifts in the measurement of $A_{FB}^{0,b}$ has been identified. While the QCD corrections are significant, their uncertainties are small compared to the total errors and are taken into account.

All known uncertainties are investigated and are taken into account in the analyses. The same holds for the A_{LR}^{0} measurement, where the most important source of systematic uncertainty, namely the determination of the beam polarization, is small and well-controlled.

Thus the shift is either a sign for new physics which invalidates the simple relations between the effective parameters assumed in this chapter, or a fluctuation in one or more of the input measurements. In the following we assume that measurement fluctuations are responsible.
Parameters of the Standard Model

• Three couplings for three forces
 Electromagnetic: α, weak: G_F, strong: α_S
 The relation $G_F = \frac{\pi \alpha}{\sqrt{2} m_W^2 \sin^2 \theta_W^{\text{tree}}}$ reduces them to two: α and α_S
 G_F is measured: $(1.166371 \pm 0.000006) \times 10^{-5}$ (MuLan)
 G_F is measured: $(1.166353 \pm 0.000009) \times 10^{-5}$ (FAST)

• Fermion masses
 All light quarks are not relevant at these energies: m_t

• Boson masses
 The photon is massless
 Given $G_F = \frac{\pi \alpha}{\sqrt{2} m_W^2 \sin^2 \theta_W^{\text{tree}}}$ use G_F instead of m_W
 It reduces to m_Z

• And of course... the Higgs-boson mass m_H
The electromagnetic coupling (constant)

The fine-structure constant is a fundamental quantity of Physics, measured with high precision

\[1/\alpha_0 = 137.03599911 \pm 0.00000046 \]
CODATA, Rev.Mod.Phys 72(2000)351

In quantum field theory, owing to vacuum polarisation, the electromagnetic coupling runs with the squared momentum transfer

\[\alpha(Q^2) = \frac{\alpha_0}{1 - \Delta\alpha(Q^2)} \]

where for \(m_f < m_W, Q^2 \)

\[\Delta\alpha(Q^2) = \frac{\alpha_0}{3\pi} \sum_f q_f^2 (N_c)_f \left(\ln \frac{Q^2}{m_f^2} - \frac{5}{3} \right) + ... \]

\[\Delta\alpha(Q^2) = \Delta\alpha_{\text{leptons}}(Q^2) + \Delta\alpha_{\text{hadrons}}(Q^2) \]

- \(\Delta\alpha_{\text{leptons}}(Q^2) \) is nicely computed
- \(\Delta\alpha_{\text{hadrons}}(Q^2) \) to be derived from data+theory (with uncertainty)
Describing the running of α

\[
\alpha(Q^2) = \frac{\alpha_0}{1 - \Delta \alpha(Q^2)} = \frac{\alpha_0}{1 - \Delta \alpha_{\mu\tau}(Q^2) - \Delta \alpha_{\text{top}}(Q^2) - \Delta \alpha_{\text{had}}^{(5)}(Q^2)}
\]

\[
\Delta \alpha_{\mu\tau}(m_Z^2) = 0.03150
\]

Steinhauser, PLB 429(1998)158

\[
\Delta \alpha_{\text{top}}(m_Z^2) = -0.00007 \pm 0.00001
\]

Montagna, CPC 117 (1999)278
Arbuzov, hep-ph/0507146

\[
\Delta \alpha_{\text{had}}^{(5)}(m_Z^2) = 0.02758 \pm 0.00035
\]

Burkhardt&Pietrzyk, PRD 72(2005)057501

\[
\frac{1}{\alpha(m_Z^2)} = 128.940 \pm 0.048
\]
Describing the running of α

The hadronic contribution is derived as

$$\Delta \alpha^{(5)}_{\text{had}}(Q^2) = -\frac{\alpha Q^2}{3\pi} \Re \int_{4m_e^2}^{\infty} ds \frac{R_{\text{had}}(s)}{s(s-Q^2-i\varepsilon)}$$

from the hadronic cross section

$$R_{\text{had}} = \frac{\sigma(e^+e^-\rightarrow \text{hadrons})}{\sigma(e^+e^-\rightarrow \mu^+\mu^-)}$$

which results into:

$$\Delta \alpha^{(5)}_{\text{had}}(m_Z^2) = 0.02758 \pm 0.00035$$

$$\frac{1}{\alpha(m_Z^2)} = 128.940 \pm 0.048$$
The strong coupling (constant)

Identify processes which are experimentally and theoretically “clean” to study in order to extract α_S

- **Measurement from the branching ratio of tau leptons**

\[
R_\tau = \frac{B(\tau \to h \nu_\tau)}{B(\tau \to e\bar{\nu}_e \nu_\tau)} = \frac{1 - B(\tau \to e\bar{\nu}_e \nu_\tau) - B(\tau \to \mu\bar{\nu}_\mu \nu_\tau)}{B(\tau \to e\bar{\nu}_e \nu_\tau)} \\
= 3 \, (|V_{ud}|^2 + |V_{us}|^2) \, S_{EW} \\
\times \left(1 + \frac{\alpha_s}{\pi} + 5.2023 \left(\frac{\alpha_s}{\pi} \right)^2 + 26.366 \left(\frac{\alpha_s}{\pi} \right)^3 + (78 + d_3) \left(\frac{\alpha_s}{\pi} \right)^4 + \delta_{NP} \right)
\]

- **Measurement from the jet rates at LEP**

- **Measurement from the event shapes at LEP**
Fraction of n jet events at LEP

N-jet Fraction = Number of events with 2, 3, 4 or 5 jets / Number of events with jets

Remember, y_{cut} is the cut of the threshold to aggregate “particles” into “jetlets” in the JADE algorithm, with distance:

$$y_{ij} = 2 \frac{E_i E_j (1-\cos \theta_{ij})}{E_{\text{vis}}^2}$$
Event-shape variables

Sensitive to the number and kinematics of jets, and therefore to α_s.

Example: Trust. Fit 5 different variables at 9 energy points.

\[T = \frac{\sum |\vec{p}_i \cdot \hat{n}_T|}{\sum |\vec{p}_i|} \]
Event shape variables, the whole enchillada

G. Dissertori et al arXiv:07120327
Knowledge of theoretical shapes to fit is (was?) a limiting factor
A world average of α_S

S. Bethke arXiv:hep-ex/0407021
Radiative corrections

Electroweak processes “feel” bosons and fermions
The Standard Model black-box

Use input parameters...

to predict values...

to compare to measurements...

...to check the Standard Model
...to predict m_H

α
α_S
m_Z
m_t
m_H

G_F

χ^2 fit

$m_Z \Gamma_Z \sigma_{\text{had}} R_l A_{\text{FB}} A_{\text{LR}}$

m_W
m_t

Salvatore Mele | From LEP to LHC | Troisième cycle
Impressive evidence for EW effects in radiative corrections
Some Standard Model predictions
Another Standard Model prediction

The top is “easy” to “discover” at LEP: radiative corrections depend on m_t^2!

Unfortunately they only only depend on $\log_{10} m_H$!
The measured values of m_W and m_t
The health chart of the Standard Model

1. Chose one parameter
2. Remove it from the fit
3. Predict its value from all other contributions
4. Compare to data

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Fit</th>
<th>(\frac{O_{\text{fit}} - O_{\text{meas}}}{\sigma_{\text{meas}}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \alpha_{\text{had}}^{(5)}(m_Z))</td>
<td>0.02758 ± 0.00035</td>
<td>0.02767</td>
</tr>
<tr>
<td>(m_Z) [GeV]</td>
<td>91.1875 ± 0.0021</td>
<td>91.1875</td>
</tr>
<tr>
<td>(\Gamma_Z) [GeV]</td>
<td>2.4952 ± 0.0023</td>
<td>2.4958</td>
</tr>
<tr>
<td>(\sigma_{\text{had}}^0) [nb]</td>
<td>41.540 ± 0.037</td>
<td>41.478</td>
</tr>
<tr>
<td>(R_l)</td>
<td>20.767 ± 0.025</td>
<td>20.743</td>
</tr>
<tr>
<td>(A_{\text{fb}}^{0,\perp})</td>
<td>0.01714 ± 0.00095</td>
<td>0.01644</td>
</tr>
<tr>
<td>(A_l(P_Z))</td>
<td>0.1465 ± 0.0032</td>
<td>0.1481</td>
</tr>
<tr>
<td>(R_b)</td>
<td>0.21629 ± 0.00066</td>
<td>0.21582</td>
</tr>
<tr>
<td>(R_c)</td>
<td>0.1721 ± 0.0030</td>
<td>0.1722</td>
</tr>
<tr>
<td>(A_{\text{fb}}^{0,b})</td>
<td>0.0992 ± 0.0016</td>
<td>0.1038</td>
</tr>
<tr>
<td>(A_{\text{fb}}^{0,c})</td>
<td>0.0707 ± 0.0035</td>
<td>0.0742</td>
</tr>
<tr>
<td>(A_b)</td>
<td>0.923 ± 0.020</td>
<td>0.935</td>
</tr>
<tr>
<td>(A_c)</td>
<td>0.670 ± 0.027</td>
<td>0.668</td>
</tr>
<tr>
<td>(A_l) (SLD)</td>
<td>0.1513 ± 0.0021</td>
<td>0.1481</td>
</tr>
<tr>
<td>(\sin^2 \theta_{\text{eff}}(Q_{\text{ib}}))</td>
<td>0.2324 ± 0.0012</td>
<td>0.2314</td>
</tr>
<tr>
<td>(m_W) [GeV]</td>
<td>80.399 ± 0.025</td>
<td>80.376</td>
</tr>
<tr>
<td>(\Gamma_W) [GeV]</td>
<td>2.098 ± 0.048</td>
<td>2.092</td>
</tr>
<tr>
<td>(m_t) [GeV]</td>
<td>172.4 ± 1.2</td>
<td>172.5</td>
</tr>
</tbody>
</table>
Measured vs. predicted: m_W and m_t

W-Boson Mass [GeV]
- TEVATRON: 80.432 ± 0.039
- LEP2: 80.376 ± 0.033
- Average: 80.399 ± 0.025

Top-Quark Mass [GeV]
- CDF: 172.1 ± 1.6
- DØ: 172.7 ± 1.6
- Average: 172.4 ± 1.2

Repeat the fit leaving m_W or m_t as a free parameter
Measured vs. predicted: m_W and m_t

Repeat the fit leaving m_W or m_t as a free parameter.
Measured vs. predicted: m_W and m_t

Repeat the fit leaving m_W and m_t as a free parameters.
Limitology

\[m_H < 154 \text{ GeV} \text{ @ } 95\% \text{ C.L.} \quad \text{With blue band included} \]

\[m_H > 114.4 \text{ GeV} \text{ @ } 95\% \text{ C.L.} \quad \text{LEP-I direct search} \]

\[m_H < 185 \text{ GeV} \text{ @ } 95\% \text{ C.L.} \quad \text{Combination of the above} \]
Breakdown of the sensitivities to m_H

Fit m_H from 5 parameters

4 parameters \rightarrow

5th parameter \rightarrow

The discrepancies between A_{LR} and A^b_{FB} are important when it comes to predict the Higgs mass.

Need to push m_W measurement.

\[
\Delta \alpha_{\text{had}}^{(5)}(m_W^2) = 0.02758 \pm 0.00035, \quad \alpha_S(m_W^2) = 0.118 \pm 0.003, \quad m_Z = 91.1875 \pm 0.0021 \text{ GeV} \quad m_t = 172.4 \pm 1.2 \text{ GeV}
\]
Constraints on m_H from A_{LR} A_{FB}^b and m_W

$A_{fb}^{0,l}$
$A_{fb}^{l}(P_z)$
$A_{fb}(SLD)$

Average 0.23153 ± 0.00016

χ^2/d.o.f.: 11.8/5

$\Delta \alpha^{(5)}_{\text{had}} = 0.02758 \pm 0.00035$
linearly added to

$M_t = 171.4 \pm 2.1$ GeV

$\Delta \alpha_{\text{lep}} = 0.02758 \pm 0.00035$

$\sin^2 \theta_{\text{eff}}^{\text{lept}}$

10^3

10^2

0.232

0.233

0.234

0.235

0.236

0.237

0.238

80.2

80.3

80.4

80.5

80.6
How healthy is the Standard Model?

<table>
<thead>
<tr>
<th></th>
<th>all Z-pole data</th>
<th>all Z-pole data plus m_t</th>
<th>all Z-pole data plus m_W, Γ_W</th>
<th>all Z-pole data plus m_t, m_W, Γ_W</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_t [GeV]</td>
<td>173$^{+13}_{-10}$</td>
<td>172.4$^{+1.2}_{-1.2}$</td>
<td>179$^{+12}_{-9}$</td>
<td>172.5$^{+1.2}_{-1.2}$</td>
</tr>
<tr>
<td>m_H [GeV]</td>
<td>111$^{+190}_{-60}$</td>
<td>110$^{+55}_{-38}$</td>
<td>144$^{+240}_{-81}$</td>
<td>84$^{+34}_{-26}$</td>
</tr>
<tr>
<td>$\log_{10}(m_H/\text{GeV})$</td>
<td>2.05$^{+0.43}_{-0.34}$</td>
<td>2.04$^{+0.18}_{-0.19}$</td>
<td>2.16$^{+0.42}_{-0.35}$</td>
<td>1.93$^{+0.15}_{-0.16}$</td>
</tr>
<tr>
<td>$\alpha_s(m_Z^2)$</td>
<td>0.1190 ± 0.0027</td>
<td>0.1190 ± 0.0027</td>
<td>0.1190 ± 0.0028</td>
<td>0.1185 ± 0.0026</td>
</tr>
<tr>
<td>χ^2/d.o.f. (P)</td>
<td>16.0/10 (9.9%)</td>
<td>16.0/11 (14%)</td>
<td>16.8/12 (16%)</td>
<td>17.3/13 (18%)</td>
</tr>
<tr>
<td>$\sin^2 \theta_{\text{eff}}$</td>
<td>0.23149 ± 0.00016</td>
<td>0.23149 ± 0.00016</td>
<td>0.23143 ± 0.00014</td>
<td>0.23139 ± 0.00013</td>
</tr>
<tr>
<td>$\sin^2 \theta_W$</td>
<td>0.22331 ± 0.00062</td>
<td>0.22332 ± 0.00039</td>
<td>0.22289 ± 0.00038</td>
<td>0.22306 ± 0.00029</td>
</tr>
<tr>
<td>m_W [GeV]</td>
<td>80.363 ± 0.032</td>
<td>80.363 ± 0.020</td>
<td>80.385 ± 0.020</td>
<td>80.376 ± 0.015</td>
</tr>
</tbody>
</table>
Statistical Interlude

![Chi-squared distribution plot]

- p-value for test
- α for confidence intervals
- n = 1, 2, 3, 4, 6, 8, 15, 25, 40
- 16.0/10
- 16.0/11
- 16.8/12
- 17.3/13
Statistical Interlude

\[
\chi^2/n
\]

Degrees of freedom n

- $16.0/10 = 1.60$
- $16.0/11 = 1.45$
- $16.8/12 = 1.40$
- $17.3/13 = 1.33$

Salvatore Mele | From LEP to LHC | Troisième cycle 46
Remember...

Nice χ^2 values are obtained after having combined most of the measurements.

\[
\begin{align*}
\chi^2_{data,WA} &= \sum_{i=1}^{N} \frac{(Q_i - \bar{Q})^2}{\sigma_i^2} & &\text{1. Are separate data consistent?}
\chi^2_{data,Thy} &= \sum_{i=1}^{N} \frac{(Q_i - Q_{Thy})^2}{\sigma_i^2} & &\text{2. Do all data agree with theory?}
\chi^2_{WA,Thy} &= \frac{(\bar{Q} - Q_{Thy})^2}{\bar{\sigma}^2} & &\text{3. Do averages agree with theory?}
\end{align*}
\]

For uncorrelated Gaussian-distributed uncertainties it holds

\[
\chi^2_{data,Thy} = \chi^2_{data,WA} + \chi^2_{WA,Thy}
\]

So far we looked at 1 for the single observables and at 2 for the SM overall fit.

the answer to 3 might be VERY different

Measuring $\sin^2 \theta_W$ in neutrino scattering

Measure ratio of neutral and charge current events

$$R^- = \frac{\sigma_{NC}^\nu - \sigma_{NC}^{\bar{\nu}}}{\sigma_{CC}^\nu - \sigma_{CC}^{\bar{\nu}}} = \rho^2 \left(\frac{1}{2} - \sin^2 \theta_W \right)$$

Use Fermilab neutrino and antineutrino beam
NuTeV measurement

$\sin^2\theta_W = 0.2277 \pm 0.0013 \pm 0.0009$

Standard Model Fit $\sin^2\theta_W = 0.22335 \pm 0.00062$

The two values are 3σ away

(There might be some QCD and nuclear effects in the way)
Another way of looking at NuTeV
Changing fit technique and including the Higgs limits

HJ. Flacher et al arXiv:08110009
Conclusions

...even though there are two puzzles:

A_{LR} vs A_{FB}^b and nuTeV vs high-Q^2

and alternative points of view give different ideas on overall agreement: need to find the Higgs!