Outline

October 18
• Basics of an IR probe of electronic processes in solids
• Electrostatic doping of new materials: challenges, opportunities and first accomplishments
• Intrinsic electronic transport in organic molecular crystals

October 25
• High T_c superconductivity: new materials or new state of matter?
• The search for a pairing glue in high-T_c superconductors

November 1
• High T_c superconductivity by kinetic energy saving?
• Infrared spectroscopy of correlated electron matter at the nano-scale

November 8
• Magnetic phenomena in semiconductors
• $Ga_{1-x}Mn_xAs$: first correlated electron semiconductor?
Electron: particle with negative electric charge $q = -e$ and spin $1/2$ (magnetic moment $m = \mu_B$)

Why bother with spintronics?
- new fundamental physical questions
- new phenomena
- new devices and applications

Potential advantages:
- non-volatility of memory
- increased data processing speed
- increased integration densities
- decreased electric power consumption

Magnetism timeline. 1988: Spin Electronics (Spintronics)

Peter Grunberg

Albert Fert

Electron addition:

\[\text{Electron} + \text{Electron} = \text{Electron} \]

Giant Magneto-Resistance of (001) Fe/(001) Cr Magnetic Superlattices

J. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff

des Solides, Université Paris-Sud, F-91405 Orsay, France

G. Creuzet, A. Friederic, and J. Chazelas
All-metals spintronics: giant magneto-resistance /GMR/

\[MR = \frac{R_{AF} - R_F}{R_{AF} + R_F} \]

F configuration

AF configuration
All-metals spintronics: spin tunneling device

Low ρ_{dc}

High ρ_{dc}

Band structure

Schematics

Half-metallic FM

Fe*

Majority

Minority

Energy (ev)

CrO$_2$

GaMnAs?
All-metals spintronics: spin tunneling device

low ρ_{dc}

high ρ_{dc}
Spin field effect transistor

Spin field effect transistor

Requirements: effective spin injection, slow spin relaxation, reliable spin detection.

Ferromagnetic semiconductors!

Electro-optical modulator

Electronic analog of the electro-optic modulator

Supriyo Datta and Biswajit Das
School of Electrical Engineering, Purdue University, West Lafayette, Indiana

Requirements: effective spin injection, slow spin relaxation, reliable spin detection.

Ferromagnetic semiconductors!
Charge FETs and spin FETs

Control of barrier for charge transport
Min barrier height requirement: 25 meV

Control of the spin state
No switching barriers!
Requirements:
effective spin injection,
(relatively) slow spin relaxation,
reliable spin detection.

Ferromagnetic semiconductors!
Magnetism timeline. 1996: Ferromagnetic III-V semiconductors

(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs

H. Ohno
Laboratory for Electronic Intelligent Systems, Research Institute of Electrical Communication, Tohoku University, Sendai 980-77, Japan, and Research Development Corporation of Japan (JRDC)

A. Shen and F. Matsukura
Laboratory for Electronic Intelligent Systems, Research Institute of Electrical Communication, Tohoku University, Sendai 980-77, Japan

A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye
Institute for Solid State Physics, University of Tokyo, Tokyo 106, Japan

(Received 2 February 1996; accepted for publication 10 May 1996)

A.M. Nazmul et al. PRL95, 17201 (2005)

T_c up to 250 K

Diluted Magnetic III-V Semiconductors

IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(Received 8 August 1989)

A new diluted magnetic III-V semiconductor of In_{1-x}Mn_xAs (x \leq 0.18) has been produced by molecular-beam epitaxy. Films grown at 300°C are predominantly ferromagnetic and their properties suggest the presence of MnAs clusters. Films grown at 200°C, however, are predominantly paramagnetic, and the lattice constant decreases with increasing Mn composition; both are indicative of the formation of a homogeneous alloy. These films have n-type conductivity and reduced band gaps.
Basics of III-V semiconductors

Undoped (intrinsic):

<table>
<thead>
<tr>
<th>Material</th>
<th>Eg, eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>InAs</td>
<td>0.2</td>
</tr>
<tr>
<td>GaAs</td>
<td>1.42</td>
</tr>
<tr>
<td>GaN</td>
<td>3.5</td>
</tr>
<tr>
<td>GaP</td>
<td>2.2</td>
</tr>
</tbody>
</table>

conduction band

valence band

GaAs

gap
Basics of III-V semiconductors

Doping: Introduce charged impurities

Example: replace Ga by Si in GaAs

Si has one valence electron *more* → introduces extra electron: **donor**

\[\text{Si}^{4+} \text{ weakly binds the electron: hydrogenic (shallow) donor state} \]

Example: replace Ga by Zn in GaAs

Zn has one valence electron *less* → introduces extra hole: **acceptor**

\[\text{Zn}^{2+} \text{ weakly binds the hole: hydrogenic (shallow) acceptor state} \]

For *heavy* doping the impurity band overlaps with the VB or CB
$\text{Ga}_{1-x}\text{Mn}_x\text{As}$

Ferromagnetic: $x=2-10\%$

Ga$_{1-x}$Mn$_x$As/GaAs

MBE Lab @ UCSB

LT - MBE
Mn doping:

- magnetic moments
- holes
- localization
- defects
 As anti-sites
 Mn interstitials
Ferromagnetic Ga$_{1-x}$Mn$_x$As

H. Ohno
JMMM 200, 110 (1999)

“metallic”

“insulating”

Jungwirth et al. PRB72, 165204 (05)

Penn State, UCSB, Nottingham
Tunable ferromagnetism in III-V series

For $V_g > 0$, there is a decrease in T_C.

For $V_g = 0$, T_C remains unchanged.

For $V_g < 0$, there is an increase in T_C.
Spin polarization and optics

Y. Ohno et al.
Exchange interaction in magnetic semiconductor

Exchange interaction: Coulomb repulsion + Pauli exclusion

Spin Hamiltonian: \(H_{\text{int}} = -J \vec{S}_1 \cdot \vec{S}_2 \) \quad J = E_s - E_t

Heisenberg model:

\[H_{\text{int}} = -\sum J_{mn} \vec{S}_m \vec{S}_n \]

Direct exchange: wave function overlap \textbf{FM}

Super-exchange: \textbf{AF} (typically)
Exchange interaction in magnetic semiconductors

Exchange interaction: Coulomb repulsion + Pauli exclusion

Spin Hamiltonian: \(H_{\text{int}} = -J \vec{S}_1 \cdot \vec{S}_2 \)

Heisenberg model:

\[
H_{\text{int}} = - \sum J_{mn} \vec{S}_m \vec{S}_n
\]

Direct exchange: wave function overlap \(\text{FM} \)

Super-exchange: \(\text{AF} \) (typically)

Double exchange: \(\text{FM} \)

La\(_{1-x}\)Sr\(_x\)MnO\(_3\): La\(^{3+}\), Sr\(^{2+}\) O\(^{2-}\) Mn – mixed valence

\[
\sigma \propto x \frac{T_c}{T}
\]
Exchange interaction in magnetic semiconductors

Exchange interaction: Coulomb repulsion + Pauli exclusion
Spin Hamiltonian: \(H_{\text{int}} = -J \mathbf{S}_1 \cdot \mathbf{S}_2 \)
\(J = E_s - E_t \)

Heisenberg model:
\(H_{\text{int}} = -\sum J_{mn} \mathbf{S}_m \cdot \mathbf{S}_n \)

Direct exchange: wave function overlap \textbf{FM}
Super-exchange: \textbf{AF} (typically)
Double exchange: \textbf{FM}

Kinetic exchange: \textbf{FM}; spin polarized Fermi sea

\[H = -J_{pd} \sum \mathbf{S}_i \cdot \mathbf{S}_l \delta \left(\mathbf{r}_i - \mathbf{R}_l \right) \]

- hole spin 1/2
- impurity spin 5/2

- hole position
- impurity position
Ferromagnetism in III-Mn-V semiconductors

Double-exchange?

Kinetic exchange?

Band energy change in impurity d-band

Hole mediated ferromagnetism

Band energy change in valence band
From dilute Mn impurities to ferromagnetic $\text{Ga}_{1-x}\text{Mn}_x\text{As}$

GaAs: Mn

$\text{Ga}_{1-x}\text{Mn}_x\text{As}$ $x=1-5\%$
doped semiconductor
$T_C < 70$ K
FM mediated by:
localized holes
in the impurity band
Akai 1998; Alvarez et al. 2002
Savinto et al. 01; Berciu and Bhatt 01
Kaminski and Das Sarma 02
Durst 2002; Fiete 2003
Litvinov 2003; Zunger 04;
Tang and Flatte 2004

$\text{Ga}_{1-x}\text{Mn}_x\text{As}$ $x=5-10\%$
Metal
$T_C < 180$ K
FM mediated by:
delocalized holes
in the valence band
Dietl et al. 2001
Jungwirth, Yang, Sinova, Timm, Masek, Kucera, MacDonald 2001-06
Priour, Hwang, and Das Sarma 04

Mn doped semiconductor

Mn

Mn

Mn
Infrared and optical spectroscopy of magnetic semiconductors

Ga$_{1-x}$Mn$_x$As, x=5-10%

Detector: $T(\omega)$
Detector: $R(\omega)$

$\sigma_1(\omega) + i\sigma_2(\omega)$
GaAs: optical conductivity

Re conductivity, \((\Omega \text{cm})^{-1}\)

\(E_G\)

\(E_G\)
Ga$_{1-x}$Mn$_x$As: optical conductivity

Re conductivity, (Ωcm)$^{-1}$

E (meV)

E (eV)

x=1.7%

LT-GaAs

Mn

As

Ga

R.M. Feenstra et al.

PRL 71, 1176 (93)

Singley et al.

PRL 89, 97203 (02)
Ga$_{1-x}$Mn$_x$As: optical conductivity

Mn doping:

gap edge smearing
increase of intragap $\sigma_1(\omega)$
resonance at 2000 cm$^{-1}$
metallic transport

Singley et al. PRL 89, 97203 (02)
Ga$_{1-x}$Mn$_x$As: sum rule analysis of $\sigma_1(\omega)$

\[\frac{n}{m^*} = \int_0^\Omega \sigma_1(\omega) \, d\omega \]

T_c vs. x (% Mn)

Re conductivity, (Ωcm)$^{-1}$

Wavenumber cm$^{-1}$

Singley et al. PRL 89, 97203 (02)
Understanding the optical conductivity of Ga$_{1-x}$Mn$_x$As

\[\sigma_1(\omega), \ (\Omega \text{cm})^{-1} \]

$k E (eV)$

$x = 0.052$

10^{17} Mn/cm^3

$x50$

Wavenumber cm$^{-1}$
Understanding the optical conductivity of $\text{Ga}_{1-x}\text{Mn}_x\text{As}$

$\sigma_1(\omega)$, $(\Omega\text{cm})^{-1}$

J. Sinova et al.

$E(\text{eV})$

10^{17} Mn/cm3

$x=0.052$

$x\times50$

Wavenumber cm$^{-1}$
Intra-gap conductivity

σ(ω), Ω^{-1}cm^{-1}

Ga_{1-x}Mn_xAs 5.2%
T_C=70 K
c.2001

Ga_{1-x}Mn_xAs 5.2%
T_C=80 K
c.2005

Ga_{1-x}Mn_xAs 5.2%
T_C=120 K
annealed

E.J. Singley et al. PRL 89, 97203 (02)

Burch et al. PRL 97, 87208 (2006)
Understanding intra-gap conductivity: doping dependence

E, eV

$\sigma(\omega)$, $\Omega^{-1} \text{cm}^{-1}$

Ga$_{1-x}$Mn$_x$As 5.2%

$T_C = 120$ K

annealed

E.J. Singley et al. PRL 89, 97203 (02)

Burch et al. PRL 97, 87208 (2006)
Understanding intra-gap conductivity: doping dependence

J. Sinova et al. PRB 66, 41202 (02)

Burch et al. PRL 97, 87208 (2006)
Impurity band and intra-gap conductivity of $\text{Ga}_{1-x}\text{Mn}_x\text{As}$

$\sigma(\omega), \Omega^{-1}\text{cm}^{-1}$

E, eV

$R.\text{Braunstein (1959)}$

$W.\text{Songprakob et al JAP 91, 171 (2002)}$

$\Lambda \Gamma \Delta X$

L Λ Γ Δ X

5×10^{20} 1×10^{21}

4×10^{20} 8×10^{20}

$p (\text{cm}^{-3})$

$N_{\text{eff}} (\text{cm}^{-3}/m_0)$

$Burch et al. \text{PRL 97, 87208 (2006)}$
Impurity band and intra-gap conductivity of Ga$_{1-x}$Mn$_x$As

Hwang, Milis and Das Sarma PRB65, 233206 (02)

Burch et al. PRL 97, 87208 (2006)
Intra-gap conductivity: Drude response revisited

$\sigma(\omega), \Omega^{-1}\text{cm}^{-1}$

Ga$_{1-x}$Mn$_x$As 5.2%
$T_C=70$ K
c.2001

Ga$_{1-x}$Mn$_x$As 5.2%
$T_C=80$ K
c.2005

Ga$_{1-x}$Mn$_x$As 5.2%
$T_C=120$ K annealed

$1/\tau = \frac{p}{m^*}$

E.J. Singley et al. PRL 89, 97203 (02)

Burch et al. PRL 97, 87208 (2006)
Intra-gap conductivity: Drude response revisited

Ga$_{1-x}$Mn$_x$As Transport:

Ku et al. APL 82, 2302 (03)
Wang et al. PRB72, 115207 (05)

\[
p \approx 10^{21} \text{ cm}^{-3}
\]

\[
\mu \approx 1 - 5 \text{ cm}^2 / V_s \\
polymers, a-Si
\]

\[
\mu \approx 80 - 120 \text{ cm}^2 / V_s \\
p-GaAs
\]

\[
\mu = \frac{e \tau}{m^*}
\]

<table>
<thead>
<tr>
<th></th>
<th>5.2 % annealed</th>
<th>7.3% annealed</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_c</td>
<td>120 K</td>
<td>140 K</td>
</tr>
<tr>
<td>m^*</td>
<td>35-70 m_e</td>
<td>15-30 m_e</td>
</tr>
</tbody>
</table>

\[
\frac{1}{\tau} = \frac{p}{m^*}
\]

Gaussian conductivity, $\sigma(\omega)$, $\Omega^{-1}\text{cm}^{-1}$

*Ga$_{1-x}$Mn$_x$As 5.2%
$T_c=120$ K annealed*

Burch et al. PRL 97, 87208 (2006)

Intra-gap conductivity, $\mu = \sigma(\omega)$, $\Omega^{-1}\text{cm}^{-1}$
Spectroscopic evidence for the impurity band in Ga$_{1-x}$Mn$_x$As

MCD
B. Beschoten et al. PRL 83, 3073 (99)
Tang & Flatte PRL 92, 47201 (04)

ARPES
Fujimori prb 64, 125304 (2001)

Infrared
Singley et al. PRL 89, 97203 (02)
Hirakawa et al. PRB 65, 193312 (02)

Hot electron PL
Sapega et al. PRL 94, 137401 (05)

STM
Yakunin et al. PRL 95, 256402 (05)

Transport
\[
\mu = \frac{e\tau}{m^*} = 1 - 5 \text{cm}^2/\text{Vs}
\]
\[
m^* = 15 - 50m_e
\]
Digital ferromagnetic heterostructures

Sub-monolayer MnAs?
Continuous film? Clusters? Overdoped Ga$_{1-x}$Mn$_x$As?

$\sigma_1(\omega)$, Ga$_{1-x}$Mn$_x$As
$x=5.2\%$

$\sigma_1(\omega)$, MnAs$_{(0.5)}$/GaAs$_{(10)}$

300 K

Wavenumber, cm$^{-1}$
Digitally doped Ga$_{1-x}$Mn$_x$As

Metallic FM

Insulating FM

Scanning near field optical microscopy of Ga$_{1-x}$Mn$_x$As?

\[\frac{n}{m^*} = \int d\omega \sigma_1(\omega) \]

Homogeneous Ga$_{1-x}$Mn$_x$As?

- Hole-rich regions in hole-depleted host? (Hamaya et al., PRL 94, 147203 (2005))
- Mn clusters?
- MnAs clusters?
- Sphere resonance? (S. Seo et al., JAP 95, 8172 (04))
- More?

Optics of inhomogeneous medium

- Problematic absolute values
- New features / artifacts
- Kramers-Kronig breakdown

Far-IR – Mid IR
Scanning near field infrared microscopy of Ga$_{1-x}$Mn$_x$As

$\sigma(\omega)$, $\Omega^{-1}\text{cm}^{-1}$

Burch et al. PRL 97, 87208 (2006)

Far-IR – mid IR

$\omega=960$ cm$^{-1}$

$S_2(x), ru$

Near Field Profile

Topography

$\omega=960$ cm$^{-1}$

$S_2(x), ru$

Near Field Profile

$S_2(x), ru$
Scanning near field IR microscopy of $\text{Ga}_{1-x}\text{Mn}_x\text{As}$: implications

- $x=3$-7%: homogeneous
- $x>7%$: oxide clusters on the surface
- $\sigma(\omega)$ analysis is valid!
- heavy effective masses

$\omega=960 \text{ cm}^{-1}$

$x=0.077$

annealed

$S_2(x)$, ru

Near Field Profile

12 nm

0 nm

500 nm
1. Impurity band

- Infrared
- STM
- ARPES
- PL
- MCD
- Transport

- High T_C samples

2. Unconventional metal-Insulator transition

3. Ferromagnetism mediated by mobile and localized holes

4. Disorder

Homogeneous?